Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(4): 719-727, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38275006

RESUMO

Traditional lead-based primary explosives present challenges in application to micro-energetics-on-a-chip. It is highly desired but still remains challenging to design a primary explosive for the development of powerful yet safe energetic films. Copper-based azides (Cu(N3)2 or CuN3, CA) are expected to be ideal alternatives owing to their properties such as excellent device compatibility, excellent detonation performance, and low environmental pollution. However, the significantly high electrostatic sensitivity of CA limits its use in micro-electro-mechanical systems (MEMS). This study presents an in situ electrochemical approach to preparing and modifying a CA film with excellent electrostatic safety using a Cu chip. Herein, a CA film is prepared by employing Cu nanorod arrays as precursors. Next, polypyrrole (PPy) is directly coated on the surface of the CA materials to produce a CA@PPy composite energetic film using the electrochemical process. The results show that CuN3 is first generated and gradually oxidized to Cu(N3)2, essentially forming enclosed nest-like structures during electrochemical azidation. The microstructure and composition of the product can be regulated by varying the current density and reaction time, which leads to controllable heat output of the CA from 521 to 1948 J g-1. Notably, the composite energetic film exhibits excellent electrostatic sensitivity (2.69 mJ) owing to the excellent conductivity of PPy. Thus, this study offers novel ideas for the further advances of composite energetic materials and applications in MEMS explosive systems.

2.
Inorg Chem ; 63(3): 1642-1651, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38198689

RESUMO

Advanced energetic materials (EMs) play a crucial role in the advancement of microenergetic systems as actuation parts, igniters, propulsion units, and power. The sustainable electrosynthesis of EMs has gained momentum and achieved substantial improvements in the past decade. This study presents the facile synthesis of a new type of high-performance CuN3@CuCl hybrids via a co-electrodeposition methodology utilizing porous Cu as the sacrificial template. The composition, morphology, and energetic characteristics of the CuN3@CuCl hybrids can be easily tuned by adjusting the deposition times. The resulting hybrids demonstrate remarkable energy output (1120 J·g-1) and good laser-induced initiating ability. As compared with porous CuN3, the uniform doping of inert CuCl enhances the electrostatic safety of the hybridized material without compromising its overall energetic characteristics. Notably, the special oxidizing behavior of CuCl gradually lowers the susceptibility of the hybrid material to laser and electrostatic stimulation. This has significant implications for the passivation or self-destruction of highly sensitive EMs. Overall, this study pioneers a new path for the development of MEMS-compatible EMs, facilitating further microenergetic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...